
Reference Manual

An Automated Program Style
Analyzer

for Pascal Programmers

A Tool for Evaluating Program.n1ing
Style

I l
~

l STYLE
n
~ I

r
I Reference Manual

rl

l

I An Automated Program Style
J Analyzer

I for Pascal Programmers

1

I
lJ
u A Tool for Evaluating Prograntnting

J
Style

J

u

1 l
n
: l
fl
n
fl
n
n
r 1

11

11

~ I
~

u
u
ll
u
u
u

r l
n

l

I j

LI

I
J

u

CONTENTS

Chapter 1 Introduction to S1YLE

Chapter 2 Programming Style and
Style Analyzers

Chapter 3 User Interface

Chapter 4 Implementation

Chapter 5 What S1YLE Is Checking

References

Index

© Al Lake and Curt Cook

All Rights Reserved. Computer Science Department, Oregon
State University, Corvallis, Oregon 97331. (503) 754-3273

Apple, AppleTalk, ImageWriter, LaserWriter, and Macintosh
are registered trademarks of Apple Computer, Inc.

LightSpeed Pascal is a registered trademark of Think Tech­
nologies, Inc., Lexington, Massachusetts.

n

n
r

l I .

l
l
l
l
n
n
l
l
1

I
j

j

J

I
u
u

Chapter 1

INTRODUCTION
STYLE

Figure 1.

Activities of
Maintenance
Personnel

TO

Programming style plays an important role in program
understanding and maintenance. Studies [Par83] have
shown that as much as one-half of a maintenance program­
mer's time is spent in activities related to understanding the
program. Program understanding is also important for test­
ing and debugging. Programming style embellishes the
readability of a program and hence improves its under­
standability.

Understandability (or readability) and maintainability are
two of the most important attributes of a program. Putnam
estimated [Put80] that the total development work on a
software project would only be 40% of the total effort.
Therefore, modification and enhancement work was at
least 50% of the life-cycle effort, (the systems definition and
functional design specifications are the other 10%). The
readability of a program directly affects the maintainabil­
ity of a program. It is estimated that a maintenance
programmer spends nearly half of his /her time attempting
to understand a program, [Par83], as shown in Figure 1.

Update Documentation

Test
28%

Study
Code
23%

Study
Documentation

Hence, the easier a program is to read the easier it will be
to maintain .

1

l
7
7
l
n
n
I
1

l

I
I
J

u
J

j

u

LJ

Figure 2.

Maintenance
Cost

The cost of software maintenance has increased steadily
during the past 20 years. The Figure 2 illustrates the past,
current, and projected percentage of overall software budget
expended on maintenance of existing software [Pre82].

Msintensnce Cost
& a Percent ofSafhvare Budgets

35 - 40~ 40 - 60~ 70 - 80~

Because of the possibility of modification, the percentage of
the software budget which is maintenance cost has steadily
increased from about 35-40 percent in 1970 to 70-80 percent
in 1980 [Pre82]. 'That the issues of testability and maintaina­
bility are important is borne out by the fact that we often
spend half of the development time in testing and can spend
most of our dollars maintaining systems" [McC76]. 'The
maintainability of an application is more important to the
developer than the user" [Lew87]. As such, software should
be developed and coded with ease of maintenance and
readability in mind. Following good programming style rules
improves the readability and maintainability of the program.

Little time is spent on programming style in programming
textbooks and in introductory programming courses which
concentrate on teaching the syntax of a particular program­
ming language and the use that programming language in solv­
ing problems. There is little space in the book and little class
time for other than a superficial treatment of programming
style. Programming assignments are graded on how well the
program solves the problem; that is, the cleverness or efficiency
of the algorithm. A small part, if any, of the program grade is
based on style and readability.

2

n
n
n
~

0
n
fl

n
fl

l l
I J

lJ
lJ
u
u
lJ
u

u

l
l
l
n
n

I
1

j

l
I
J

I
Li

J

J

J

u

Chapter 2

PROGRAMMING
STYLE AND STYLE
ANALYZERS

Programming style is an elusive yet intuitive quality of a
program. It is difficult to define programming style and
defining 'good' style that will produce mor readable pro­
grams is even more difficult. A common approach to pro­
gramming style is to formulate a set of principles or rules and
use them as a yardstick to measure the style of the program.
However, the principles or rules are subjective and in many
instances difficult to quantify. A number of books and
articles present rules for good programming style [Ker71,
Led75], as well as rules for particular languages (Pascal
[Ree82 , Mee83], FORTRAN [Red86], C [Ber85]).

Even though there is no clear definition of programming
style, the intent of programming style is to "produce code
that is clear and easily understood without sacrificing per­
formance" [Oma87]. Therefore, from a programmer's point­
of-view, we define programming style as the effective struc­
turing and arrangement of programs to increase readability
and maintainability without degrading performance.

Several automated programming style analyzers/ graders
have been developed that attempt to measure style. They
calculate a single style score between O and 100 that: is a
weighted sum of the counts ofvarious _program characteris­
tics. Automated programming style analyzers have been
developed for Pascal [Ree82, Mee83], FORTRAN [Red86].
and C [Ber85]. Rees' Pascal source code grader [Ree82] was
based on ten factors: average line length, comments, inden­
tation, blank lines, embedded spaces, modularity, variety of
reserved words, identifier length, variety of identifier names,
and the use oflabels and GOTOs. Each of the ten factors was
quantified and assigned a weight. A trigger-point scoring
scheme was used to quantify each factor. In this scheme an
interval is established for each factor . If the factor is within
the interval a linear interpolation scheme is used to calculate
its value. Its value is zero if it is outside the interval. The
style factors were selected on an intuitive basis and experi­
ence. The weights and trigger-points were selected by
adjusting them until the analyzer awarded "A" grades to
good programs. Rosenthal [Ros83] and Meekings' [Mee83]
Pascal published style checkers based on the same style
factors as Rees; however, the way they calculated the factors
was slightly different and they omitted the "variety of iden­
tifiers " factor.

Berry and Meekings [Ber85] modified Meekings' style ana­
lyzer for C. They added a count of the included files and the

3

l
~

l
I
l
n
l
l
l
}

I
1

lJ

I
J

J

u

"percentage of constant definitions" and slightly modified the
manner in which the other factors were calculated. Redish and
Smyth [Red86] used 33 factors in their FORTRAN77 style
analyzer. Their 33 factors can be grouped into categories:

commenting (4),
indentation (1).
block sizes (2).
statement labels and formats (7).
counts of names and statements (6).
array declarations (2).
control flow and nesting measures (7),
blank lines (1),
operator count (1).
operand count (1), and
parametrization (1).

Their AUTOMARK program uses the trigger-point scheme of
Rees for each factor. The style score is the weighted sum of the
factors.

All of the style graders compute a single style score based on a
weighted sum of subjectively (intuition and experience) se­
lected set of factors (e.g. program characteristics), factor weights
and trigger-points for each factor. With one minor exception
they provide no non-technical feedback, justification, or guid­
ance to the user about the style factors, weights, or trigger­
points selected. The one exception is the AUTOMARK and
ASSESS programs [Red86] for FORTRAN. AUTOMARK output
include a brief semi-technical description of each factor. The
ASSESS program provides a Low-Average-High evaluation for
10 factors and some specific comments on indentation, com­
menting, and label usage. It is interesting to note that although
AUTOMARK uses 33 factors, their FORTRAN syntax checker
actually computes 376 measurements. The authors state that
they expect this set to evolve to about 100. They also hope to
"validate" various sets of factors in the future.

S1YLE, does not assign a grade or give a battery of numerical
metrics to the user. Instead it analyzes each module and
outputs descriptive non-technical messages about any style
deficiencies it found or one of several positive congratulatory
messages if it found no deficiencies. The messages are provided
to the user in a non-threatening manner, much like an English
teacher writing comments on a student's paper. Hence running
S1YLE is like having an expert evaluate the program code and
provide comments about the style.

4

1

7
l
l
n
n
]

n

]

]

]

]

l
I

LJ

u
u

ECONOMY

MODULARITY

SIMPLICITY

STRUCTURE

DOCUMENTATION

LAYOUT

The S1YLE approach to quantifying program style is to first for­
mulate widely accepted and general principles that include all
of the commonly accepted programming style guidelines.

The style principles used in S1YLE are based on six "desirable
qualities" of style in Redish and Smyth [Red86].

The six qualities are defined as:

• Economy - the careful or thrifty measures taken to provide
the code in as concise a manner as is possible and
practical.

• Modularity - to regulate the standard structural compo­
nent as a unit of measurement of program source
code.

•Simplicity-the state or quality of being simple, the absence
of complexity, intricacy, or artificiality.

• Structure - the organization of elements, parts, or constitu­
ents in a complex entity.

• Documentation - supporting references explaining the
process of the program, the degree of self-descriptive­
ness of an application.

• Layout - the arrangement, plan or formatting of the
program.

These principles form the framework for the programming style
rules. Rather than grouping all the program characteristics we
could compute or think of under the style principles, we listed
all of the applicable programming style rules from the most
popular books on programming style [Ker78, Led75] uhder
each principle. These rules provide more detailed information
about the principles and the basis for the meaningful comments
output to the user.

The last step in the S1YLE approach was to quantify each of the
style rules through measures of program characteristics.
Because of the nature of these rules our measurements were
rated as either accurately quantified, estimated, or unable to
quantify. For example one part of an accurate quantification
of the rule "Avoid superfluous actions or variables in the
program" [Ker78] is to determine whether every variable de-

5

I
l
l
l
n
11

l
1

j

j

J

j

I
u
u
IJ

dared is used in the program. The rule "Use meaningful vari­
ables names" [Ker78] can be estimated by average length of
variable names and the rule " Use a simple or straightforward
algorithm" [Ker78] cannot be quantified. Only those rules rated
as accurate or estimated were considered for implementation.

Through our approach we tried to be as objective as possible.
We did not want our selection of style factors to be overly
influenced by what program characteristic measurements
were easily obtainable from the program. Since our style
analyzer was to output meaningful messages, we wanted it to
be based on a set of well established and accepted principles of
programming style which would form the basis for our mes­
sages. In addition, our style analyzer would be based on pro­
gramming language independent concepts.

6

~

8
n
n
0
n
n
r1

11

l J

n
l I
u
lJ
u
u
u
u

l
~

7
l
0
7
I I

1
}

]

I I

j

lJ

lJ

J

u

Chapter 3 The user interface for S1YLE is the desktop and uses the
Apple™ Macintosh™ menu bar. See Figure 3 below for an

USER INTERFACE example, this shows all of the menus of the application ex­
tended.

Figure 3
Style Desktop

Figure 4
About Analysis ...

File Analysis Help

About Analysis ... _ Open % 0 Style
ro c Level

%5
%L

Economy
Modularity
Simplicity
Structure
Documentation
Layout

DAs
Close

Mi see 11 aneous
General

The About Analysis provides the author's name and version
number of S1YLE, and is shown below, in Figure 4.

Welcome to the Style Rnalyzer

R Programming Style Tool

Uersion 1.0

by RI Lake

[_o_K J

7

l
n File File provides all of the file handling operations:

3€0 Open - displays all files of type MacPascalTM or Light-

I I
Speed PascalTM, so that one can be selected.

3€C Close - closes the current work file.

l 3€S Save as ... - saves the style analysis output to a text
report file of TeachText format.

n Page Setup - performs page setup.

7 3€P Print - prints the style analysis report on the selected
printer.

I 3€Q Quit - quits operation of S1YLE.

~ Analysis With the Analysis menu the user can set the skill level (be-
ginner, intermediate, or expert) for the analysis or
invoke the analysis.

3€S Style - Performs a style analysis of the selected pro-

)
gram file.

3€L Level - Sets the user expertise level: either beginning,

I intermediate, or advanced. This level will deter-
mine the acceptable range of values for measur-

I
ing. Beginning programmers do not have pro-
gramming skills as well developed as advanced
programmers and as such cannot manage the

J

greater levels of nesting, complexity and other
problems associated with advanced program-
ming problems, so Beginning level will generate

lJ
more errors than Advanced level.

lJ Help Help provides a brief descriptions of the different principles
and other information. All Help information is displayed in
a modal dialog about the six style guidelines, a miscellane-

I ous options, and any general information.

u
u

8

l
1

I I

lJ
j

u
LJ

~

Figure 5
Page Setup Dialog

Figure 6
Open Input
File Dialog

In all cases the options available to the user at any time are
· limited to those which can logically be executed. For example,
when the user begins execution of the program only the Open,
Quit, and Help functions are available. When a file is opened
the Open option is disabled and the Close option is enabled,
since only one file can be open at a time. The Save As ... and
Print options are not enabled until the analysis is completed,
since no analysis data can be saved or printed prior to the input
source program being analyzed.

The Page Setup option is always available.

=Lo=s=e=rW=r=it=e=r==============v=3.=1=fi OK Il
Poper: @ US Letter O R4 Letter Reduce or IOrllJI % [Cancel]

O US Legal O B5 Letter Enlarge:

Orientation -~ Printer Effects:
[8l Font Substitution?
[8l Smoothing?

To open a file for analysis, select from the File menu the Open
option. The following dialog will be displayed, filtering out all
but the MacPascal™ and LightSpeed Pascal™ files. No special
file names are necessary.

I a Style Program I

D CLOCK_Style
D DI RLOG_Style
D EUENT_Style
D FI LE_Style
D GLOBRL_Style
D HELP _style
D MRIN_Style

i!lill

111111

~Mac HD

[~: j (~(t]

(Hrh3(~]

[Open]

[Cancel]

When the file is Opened the program is read into a memory
buffer. This allows the disk file to be closed and the program to
operate more efficiently.

9

l
n
l
7
n

rl

l
l

J

J

1

lJ
lJ

u
u

Saving a Report

Figure 7
Saving a Report
Dialog

Figure 8

Sample Report
Window

If the user selects Save As... or tries to exit the program
without saving the style analysis report, a save dialog will be
displayed, like the following figure, giving the user the option
to name the file:

I 6l Style Program I
D flNHt VS l S S tqH~,pas lg) Style

i D CU}[K S ttJh~,pt~s

~~ :\~:~~I:''. s i \~ :!: '.~; :: : ~ 1,,1,.1,.1,.1,,1,.

D r it L .. S1 ~Jie,p.:~~

(Eject]

[Driue]

D GUHHH S tqh~,pos

Saue as ... [Saue ~J
TEST_Style.pas. Report [Cancel]

The program will automatically suffix the file name with
".Report" to help keep track of the relationship between the
program file name and the style analysis report file, see the
figure below for an example of a report file).

TEST Style5.pas

Fi 1 e Name: TEST _styl e5.pas
Progra _m Name: TEST _style5 .pas

Procedure Name: TES LSHOW

This module contains too few lines of code. Consider combining
this module with another module .

Commenting not consistent. Both in-line and block comments should j

There are too few blank lines per comments in the module . Use
blank lines to make comments more visible .

There is no header comment in this module. Each module should
contain a header comment that describes what it does.

This module does not contain a block comment. Each module should :O
QI 1:::::::::::::::::::\}f':::::::::::::<:::;:::>;:~:::\X:Ul O 12:i

10

l
. l
l
l
n
r l
I
n
l

I
j

l l
u
J

u

u

Figure 9

Expertise Level
Dialog

The information displayed in the analysis window begins with
the program name followed by style messages for each of the
subprograms in the physical order in which they occur in the
program. This is illustrated in the sample window displayed
below. The Sample Window, figure 8, displays a portion of a test
file which has been analyzed by the style tool. The user can
scroll horizontally or vertically (the messages are defined by the
width of the screen so no horizontal scrolling is actually neces­
sary). The information is segmented by module, (procedure or
function) .

The user can change . the level of programming expertise,
choosing either beginning, intermediate, or advanced. This
level will determine the acceptable range of values for measur­
ing. The assumption is that beginning programmers do not
have the same programming and cognitive skills as do ad­
vanced programmers, so that more errors will be displayed for
beginning programmers than advanced programmers.

Select leuel of programming eHpertise

® Beginning

(

0 Intermediate

0 Rduanced

OK It J (___ c_a_n_c_e_l _...,.]

11

n

j

j

11

u
J

J

u

Help Dialogs

Figure 10

An Example of the
Economy Help
Dialog

The Economy Help dialog screen is shown in figure 4 as an
example of the type of dialogs used to provide the user with
information about the desirable qualities of style. These dia­
logs are meant to provide some additional information to the
user about the analysis process and the methods used in
providing the output.

Economy Help

The careful or thrifty measures
taken to prouide the code in as
concise a manner as possible and
practical. Auoid superfluous
actions or uariables in the
program.

(_oK_J

S1YLE also includes safeguards so that the user cannot lose
work; such as, accidentally quitting without saving the work
file. This action causes a Save As ... menu to be displayed so
that the report file can be saved. All menus have default file
names and error checking to reduce the number of operat­
ing system errors which might occur, such as trying to save
a file with no name.

12

l
n
n
n
n
I)

r)

n
l

f l
l I
r1

u
I I

u

. l

7
l

r)

I
n

I
l

j

j

I
u

Chapter 4 S1YLE was implemented in LightSpeed Pascal™ for Apple
Macintosh™ computers. The program is a prototype since ilie

IMPLEMENTATION goal of this project was to test the feasibility of developing a user
friendly programming style analyzer that outputs meaningful
non-technical comments about the style of a program. In
limited class testing students gave S1YLE high marks as they
felt it gave them useful comments about their programming
style .

The style tool will run on any Macintosh™ computer with a
minimum of 128K. Though the use of a computer with a limited
memory size of 128K will limit the user file to less than 50K. For
the best results, the S1YLE should be used on a Macintosh
Plus™ with 1 megabyte of memory .

When run on a larger screen, such as a Macintosh II™, the
analysis window can be resized to fit the larger screen, i.e.
S1YLE will not limit the user to the smaller Macintosh™
screen size when a larger work space is available .

The printout procedure will work for any type of LocalTalk™­
compatible network or a dedicated printer.

For further information about S1YLE: An Automated Program
Style Analyzer for Pascal, write to the authors at the address
above or e-mail to:

lake@mist.CS.ORST.EDU
or

cook@mist.CS.ORST.EDU

13

7
n
n
n
n
fl
I
1
, I
f I
! l
l j

u
11

u
u
Li

l
n
l
n
n
n

1

I
J

j

I
J

u
I
J
J

J

Chapter 5

What Style is
Checking

ECONOMY

Style is checking the six guidelines with quantifiable meas­
ures. These measures are described below.

Avoid superfluous variables - any variable that does
not provide useful results, such as an inter­
mediate variable that does not enhance the
readability of the program. Superfluous
variables are estimated from the ratio of the
total number of variables to the number of
executable lines of code.

Avoid overloading variables - the use of a variable

name in more than one context . Variable
overloading is estimated by counting the
number of lines between uses of a variable.
If the line count exceeds some constant
value, then the variable is 'estimated ' as
being used for a different context .

Minimize the overall number of variables used - use
theleastnumberofvariables possible. TOTAL
VAR describes the total number of variables
used in each module, if this value is greater
than some constant, a message is issued.

Avoid unused labels - check for unused labels.

Avoid unused variables - check for unused variables.

Avoid unreferenced procedures and functions - check
for any procedures or functions that have
been defined , but not referenced.

14

l
l
l
7
n
7
l
l
l

I
I
l I
I
I
j

j

u

MODULARITY Long modules - check for modules with more than n lines
of code.say 50, and less than m, say 10, lines of
source code.

Module size - using McCabe's Complexity Measure, V(G),

check all modules for a complexity measure
greater than 10. Count the number of condi­
tional routines or functions, such as IF /DO
WHILE/REPEAT /CASE.

More than one logical function in a module - check for
functions that perform more than one logical
function. This guideline is estimated by check­
ing for I/ 0 and arithmetic functions in the same
module or multiple 1/0 in the same module.

Parameter passing - minimize the number of parameters
passed. Count the number of parameters being
passed to determine if the number of parameters
passed is greater than n.

15

l
7
l
l
0
~

l
n
l

I
j

l J

]

SIMPLICITY Write clearly - don't be too clever and don't sacrifice
clarity for efficiency - check for use of simple
and straightforward algorithms. One way to
quantitatively estimate the clarity of a pro­
gram is to compare McCabe's Complexity
Measure, V(G), to a subjective value, such as
10, for the upper limit.

Parenthesize to avoid ambiguity - check extended lines
of code for use of parenthesis. Any line of
source code, either an assignment statement
or logical function (IF statement), which con­
tains more than n words, or more than m op­

erators should contain parentheses.

Check for the number of operators in an expression to
determine the number of parenthesis - there
should be one set of parenthesis for every
logical operator. Count the number of opera­
tors in each logical expression to determine if
the number of parenthesis is sufficient.

Avoid unnecessary branches - an IF-THEN-ELSE state­
ment with no executable statement on one of
the alternatives. This check will look for
empty IF-THEN-ELSE branches.

Avoid unnecessary GOTO's - check for the ratio of
GOTO's to the rest of the code. Check for the
ratio of GOTO statements to all source code
(and total number of GOTO's. If the ratio is
greater than 5 percent or the number 1 of

I GOTO's greater than four for any module th.en
print a message.

Check subprogram nesting - a deeply nested subpro­
gram structure complicates the structure of
the module. Count the number of embedded

16

l
l
l
n

n
l
1

I

J

lJ
l l
I I
u
lj

SIMPLICITY
(Continued)

subprograms. There should be no more than
four levels of nesting.

Average nested level - the average level of nesting for each
LOC should not exceed a value, n. Count the
nesting level of each line of code and take a
weighted average (the nesting level times the
number of lines at that level divided by the total
number of lines in the module). Check for an
average nesting level greater than n.

Compute the maximum nesting level - find the maximum
nesting level of any line in each module. Count
the nesting level of each line of code to determine
the maximum nesting level. Maximum nesting
level> 10.

17

l
n
n
l
n
ll

I
r)

J

lJ
lJ
I
J

u
u

STRUCTURE IF-THEN-ELSE statements with a null condition - do
not allow null conditions in an IF-THEN­

ELSE. Check for a null condition in IF-THEN­

ELSE.

Check for ELSE GOTO and ELSE RETURN - control the

use of a branch from an else condition and a
return from an else condition. Check for a RE­

TURN or GOTO condition in IF-THEN-ELSE.

The use of multiple GOTO's to replace a complex IF­

THEN-ELSE - Use IF .. . ELSE IF ... ELSE
IF ... ELSE... or a CASE statement to imple­

ment multi-way branches rather than using

GOTO's to construct a logical path around.

Check for complex IF-ELSE-IF-ELSE... con­

ditions. Present a comment to the user about
replacing the IF-ELSE clauses with a CASE

statement.

18

l
~

~

7
n
fl

l
1

J

u
u
J

u
u
u

DOCUMENTATION Thorough and consistent documentation. This guideline '
can be estimated by checking for the consistent
use of in-line versus block comments between
modules. A logical value is returned depicting
whether the module uses in-line or block and
compared.

Use of a header block of comments after the beginning of
a function or procedure - This guideline will only
measure the existence of comments at the begin­
ning of the module, it cannot measure the effec­
tiveness of the comments.

Variables are described by comments - Ensure that all
variables are properly and thoroughly docu­
mented. This guideline can be estimated by
measuring the ratio (RATIO LOC) of executable
lines of code to comments. If the ratio is less than
a percentage n, say 10%, or greater than a
percentage m, say 80%, output a message.

Meaningful variable names - Check for meaningful vari­
able names. This guideline is not directly meas­
urable, but an estimate can be achieved by
checking for variable names with a ~ord length
less than n, say 3, characters or greater than m,
say 12, characters.

Effective and adequate comments - Check the estimated
ratio of the number of words used in the com­
ments to ensure adequate comments. If the ratio
is less than a percentage n, say 10%, or greater
than a percentage m, say 80%, output a mes­
sage.

Don 't use excessive comments - Overcommenting is a
subjective measurement depending on the ex­
pertise of the maintenance programmer and the

19

l
1
l
n
n
n
I
l

I
J

l 1

j

J

J

u

DOCUMENTATION
(Continued)

level of understanding of the program. This
guideline cannot be effectively measured, but
an estimate is made depicting the average
number of words in each comment. With an
upper and lower bound, so thatn <AVG COM­
MENTS > m (for values like n = 50 and m = 3).

20

l
~

,l

n
n
n
I
l

]

I
I
l
lJ
u
I
j

u

LAYOUT Effective use of programming space, both horizontal and
vertical, to assist with program comprehension -
The compliance with this guideline is estimated
by the ratio of blank lines to comments on the
page. If the ratio exceeds 50% a message is
displayed.

Compute the average number of comments as an estimate
to enhance clarity - This guideline is estimated
by comparing the average number of words in
comments with the number of executable lines of
code.

Concise and effective use of space - Estimated by compar­
ing the ratio of blank lines to the number of total
lines.

Header comment - a header comment must be provided di­
rectly after the beginning of each program, pro­
cedure and function. This guideline monitors
the inclusion of comments after the program,
procedure or function verbs in the program.

Maximum number of blank lines - The maximum number
of consecutive blank lines should not exceed
some value, say 10. Check for any modules with
more than 10 consecutive blank lines.

21

7
n . I

•

n
n
n
n
! I
n
[1

f I
[I
[I
u
u
u
u
u
u
u

l
n
l
l
n
n
l
l

J

I
u
u
l J

Li

Li

REFERENCES [Ber85] R. E. Berry and B. A. E. Meekings, "A Style Analysis
ofC Programs", CommunicationsojtheACM, vol. 28(1), Jan.
1986, pp. 80-88.

[Ker78] B. W. Kernighan and P. J . Plauger. The Elements of
Programming Style. McGraw-Hill, New York, 1978.

[Led75] H.F. Ledgard. Programming Proverbs. Hayden Book
Company, Rochelle Park, New Jersey , 1975.

[Mee83] B. A. E . Meekings, "Style analysis of Pascal programs",
ACM SIGPLAN Notices vol. 18(9), Sept . 1983 , pp. 45-54.

[Oma87] P. W. Oman and C. R. Cook, "A Paradigm for Pro ­
gramming Style Research", Technical Report 87-60- 7, Com ­
puter Science Department, Oregon State University, 1987.

[Par83] G. N. Parikh and G. N. Zvegintzov , Tutorial on
Software Maintenance, IEEE Computer Society Press , 1983 ,
p. 2 .

[Ree82] M. J. Rees, Automatic Assessment Aids for Pascal
Programs, ACM SIGPLANNotices, Vol 17 (10), Oct. 1982, pp.
33-42.

[Ros83] D. Rosenthal, in correspondence from the members,
ACM SIGPLAN Notices Vol. 18 (3), Mar . 1983, pp . 4-5.

22

n
n
n
~

n
n
t l
11

f I
r J

[]

[]

l]

lJ
Li
u
Li
u
u

l
n
n
l
1
~

)

~

l

J

1

11

I J

11

lJ

J
J

INDEX Implementation

Introduction to Style

Programming Style and Style Analyzers

References

User Interface

What Style is Checking

23

13

1

3

22

7

14

-1

~

:1
~

n I
I

n I

r J

fl
fl
f I
I J

l l
lJ
u
u
l I
u
u
u

~l
n
n
~

n
n
f l
f l
f l
~ I
~ I
f I
ll
l1
u
lJ

u
J
J

	Lake_Cook_Style_A
	Lake_Cook_Style_B

